Complexity, Systems, and Software

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

Sarah A. Sheard, Ph.D. 2014

maintaining the data needed, and of including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 29 OCT 2014		2. REPORT TYPE N/A		3. DATES COVE	RED	
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER	
Complexity, System	ns, and Software			5b. GRANT NUM	MBER	
				5c. PROGRAM E	ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NU	JMBER	
Sheard /Sarah				5e. TASK NUMBER		
				5f. WORK UNIT	NUMBER	
	ZATION NAME(S) AND AE ing Institute Carneg	` '	ty Pittsburgh,	8. PERFORMING REPORT NUMB	G ORGANIZATION ER	
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	AND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)	
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited.				
13. SUPPLEMENTARY NO The original docum	otes nent contains color i	mages.				
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	CATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	SAR	26	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by FAA is sponsoring the discussion period, but the material in the presentation was created prior to my arrival at SEI (dissertation work) under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center sponsored by the United States Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of FAA is sponsoring the discussion period, but the material in the presentation was created prior to my arrival at SEI (dissertation work) or the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND. EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0001816

August 14, 2014

Agenda

What is complexity?

Complexity and project outcomes

Complexity of systems and software

Changing nature of systems and software

Software Engineering Institute

What Is Complexity?

- (1) Objective—Subjective
- (2) Definitions
- (3) Entities
- (4) Types

Carnegie Mellon University

What Is Complexity? (1) Objective—Subjective

System characteristics
Technical characteristics
Objective complexity

Many pieces

Adaptive

Emergent

Nonlinear behavior

Tightly coupled

Self-organizing

Decentralized

Non-mechanical

Chaotic behavior

Multi-scale

Cognitive characteristics
Subjective complexity
"Perceptive" complexity

Uncertain

Risky

Difficult to understand

Difficult to predict

Frustrating

Uncontrollable

Costly

Obsolete when built

Unclear cause/effect

What Is Complexity? (2): Definitions

Proposition: However you define complexity, your definition is incomplete

Don't call anything "complexity"

At least call it "X" complexity

Proposition: Engineering seeks complexity management; complexity reduction is one way of doing that

SysE for complexity reduction is not new

- Hall (1962): purpose of SysE is to manage complexity
- Techniques mostly not new: Complex adaptive systems, systems of systems

What Is Complexity? (2): Definitions

Complexity, defined subjectively, relentlessly decreases

Complexity, however defined objectively, relentlessly increases

Yet we manage it

Proposition: Complexity is not a thing

... it is a characteristic of things

What Is Complexity? (3): Entities

The system being built

built

The **project** building it

The **environment** it will affect

- Technical
- Socio-political

Cognitive aspects (confusion, frustration, difficulty)

What Is Complexity? (4): Types*

Structural

- Size (# parts, stakeholders, elements, LOC)
- Connectivity (# or density, types, strength of connection)
- Inhomogeneity (diversity, architecture, loops...)

Dynamic

- Short-term (e.g., behavioral nonlinearity)
- Long-term (evolution, transition to new states)

Socio-political

 Organizational maturity, stakeholder conflict, global context...

^{*(}Sheard 2012)

Strike a Balance

Proposition: The point of engineering is control

Proposition: Complexity has no good side

Study it to recognize it, to manage it, to reduce it

But: being overly simple is also wrong

Ashby's Law of Requisite Variety: A control system must have at least as many degrees of freedom as the disturbances it needs to counteract

- Technical system shouldn't be too simple (Allocating all complexity to operator)
- Technical system shouldn't be too complex (Hidden issues; dumbs down operator)

SMART CAR

39 Complexity Questions (Sheard 2012)*

Subsystems

Easy, nominal, difficult requirements

Technology maturity

Architecture precedence

Schedule margin

Staff skills

Sponsors

Stakeholder conflict

Stakeholder relationships

Cognitive fog

Other questions

- Project outcomes (cost, schedule, performance, subjective assessment of outcome, produce a product)
- Project start/end dates
- Project size (cost)
- Management methods (plan, risk, agile, lean, set-based)
- Respondent role and confidence

75 programs: Did complexity correlate to cost, schedule, or performance problems?

*Sheard, Sarah A. Assessing the impact of complexity attributes on system development project outcomes. Dissertation, Stevens Institute of Technology, School of Systems and Enterprises, May 2012.

Results: Top 3 Correlating Questions

	Outcome Variable			
	Cost Overrun	Schedule Delay	Performance	
Complexity Variable			Shortfall	
Q16d—Requirements Difficult				
Low (Under 100) group mean	3.37	3.30	2.26	
High (Over 100) group mean	5.00	4.64	3.60	
p-value	0.00027	0.00165	0.00163	
Significance	p<0.001	p<0.05	p<0.05	
Q32—Cognitive Fog				
Low (D-SD) group mean	3.03	2.97	2.00	
High (A-SA) group mean	3.89	4.11	3.53	
p-value	0.0395	0.0120	0.00074	
Significance	p<0.05	p<0.05	p<0.001	
Q38f—Stakeholder Relationships				
Low (Stable) group mean	3.30	3.11	2.15	
High (Resistance) group mean	4.50	4.19	3.27	
p-value	0.0209	0.0243	0.0245	
Significance	p<0.05	p<0.05	p<0.05	

Complexity of Systems and Software

Software: McCabe (cyclomatic) complexity: decisions in a code function

- Paths ~ edges and nodes
- Used to estimate defects & reliability

Systems: No complexity metric available

Proposition: Measurement is inherently simplification.

Measurement of complexity is like describing Red by means of Green variables

Use knowledge of complexity:

- Identify relative complexity and relative risk
- Identify specific risks
- Identify kinds of complexity and address as risks
- Probably tie to currently collected metrics, e.g., requirements volatility

Dealing with Complexity

Determine what kind

Apply systems engineering principles and practices Identify any special complexity as a *risk*Study how to other fields manage that risk

Bring in experts

Today's "New" complexity:

Emphasis shift from "whole system" to software

- What is it?
- How should systems and software engineers manage it?

Conclusion

Complexity means many different things

Countable, technical complexity vs. difficulty

Systems and software are getting ever more complex

- Complexity measures are inadequate
- Systems engineering has always been about managing complexity
- Some program characteristics predict cost & schedule problems; are they true "complexity"?

Tom Lehrer's First Law of Thermodynamics applies

"You can't win, the best you can do is break even"

Contact Information

Sarah Sheard, Ph.D.

Senior Engineer

Software Solutions Division

Telephone: +1 412-268-7612

Email: sheard@sei.cmu.edu

Web

www.sei.cmu.edu

www.sei.cmu.edu/contact.cfm

U.S. Mail

Software Engineering Institute

Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

USA

Customer Relations

Email: info@sei.cmu.edu

SEI Phone: +1 412-268-5800

SEI Fax: +1 412-268-6257

Backup Slides

Why I'm Not Talking Complex vs. Complicated

"Complicated" means many things

- "Can use same practices, only more of them" = MITRE (Stevens)
- Realm of systems analysis (Cynefin framework, by Kurtz and Snowden)
- Overloaded and sometimes reversed:
 - "Complexity is intrinsic, complicated is because of external influences"
 - "Complexity does not evoke difficulty; complicated refers to a high level of difficulty"
- COMPLEX COMPLICATED RETROSPECTIVELY potentially KNOWABLE COHERENT cause-effect relationships separated in time and space cause-effect relationships not repeatable expert judgement, systems pattern management, multithinking, scenario planning experimentation probe > sense > respond sense > analyse > respond DISORDERED CHAOTIC SIMPLE INCOHERENT KNOWN cause-effect relationships cause-effect relationships perceivable, predictable and not perceivable stability focused interventions repeatable SOPs; best practice and crisis management act > sense > respond sense > categorise > respond UN-ORDERED ORDERED -
- Definitions change with time: Yesterday's complex is today's complicated, and maybe neither in the future
- Seems to be too much shorthand. "Complicated" means "what I'm not talking about" and "Complex" means "what I am talking about."

I consider "Complex" to be a spectrum

Changing Nature of Systems and Software: Needed Skills

T-Shaped Systems Engineer

Shallow in everything

e.g., Telemetry & Command list

Deep in something,

e.g., communications subsystem

Proposition: Software engineering = systems engineering of software system plus implementation

T-Shaped Software Engineer

Very shallow in computer hardware

Moderate in all SW

Deep in own SW area

Effectively
0 in other
hardware
(lubricants,
mechanisms,
valves)

Prog<mark>ramm</mark>ing, Coding, Implementation

Complexity Questions

		Answer Choices					
#	Variable Name, Question	1	2	3	4	5	6
Comp	plexity Variables		•	•		•	
16d	Requirements, Difficult	1-10	10-	100-	1000-	Over	
	Approximately how many		100	1000	10,000	10,000	
	system-level requirements did the						
	project have initially? Difficult						
	requirements are considered						
	difficult to implement or						
	engineer, are hard to trace to						
	source, and have a high degree of						
	overlap with other requirements.						
	How many system requirements						
	were there that were Difficult?						
32	Cognitive Fog	Strongly	Agree	Neutral	Disagree	Strongly	
	'The project frequently found	Agree				Disagree	
	itself in a fog of conflicting data						
	and cognitive overload.' Do you						
	agree with this statement?						
38f	Stakeholder Relationships	D 1 .:		D			
	"Where did your project fit, on a	Relation-	New Rela-tion-	Resist- ance to			
	scale of Traditional, Transitional,	ships stable	ships	Chang-			
	or Messy Frontier, in the	stable	sinps	ing			
	following eight attributes?"			Rela-			
	38f. "Stakeholder relationships:			tion-			
	1: Relationships stable; 2: New			ships			
	relationships; 3: Resistance to						
	changing relationships.						

Outcome Questions

Outc	ome Variables						
9	Cost Overrun At the point of finishing, how much did the project cost, compared to the initially predicted cost for delivery?	Under cost	At cost, +/- 5%	5-20% over plan	20-50% over	50-100% over	More than 100% over plan
10	Schedule Delay At the point of finishing, how long had the project taken, compared to the initially scheduled development time?	Ahead of schedule	On time within 5%	5-20% late	20-50% late	50-100% late	More than 100% late
11	Performance Shortfall At the point of finishing, how was the project performance, compared to the initially specified performance? (Please consider the average performance of *mission critical* features, and add any qualifiers in Notes.)	Higher than specified	Same as specified, within 5%	Low by 5-20% (fewer features or waived require- ments)	Low by 20-50%	Low by more than 50%, or project was cancelled	

One Plausible Causal Chain

Figure 29. Congruence

*Significant, p<0.05; **Significant, p<0.001. Green: variable complexity rises together; Red: opposite; Yellow: neither. Blue=outcome variables; Beige=hypothesis variables.

What Is Complexity?

Webster: "the quality or state of being complex"

 Complex: Composite; hard to separate, analyze, or solve; concerning complex numbers

DARPA: Parts count + SLOC

Algorithmic information content

Uncertainty

Structural, behavioral, evaluative, nested

Automated conflict avoidance for aircraft traversing airspace boundaries at different and changing altitudes and speeds, avoiding weather, considering all stakeholders have varying financial interests...

Little guidance for systems engineering

Addressing Complexity in SoSs

Traditional program domain

- Well-bounded problem
- Predictable behavior
- Stable environment

Transitional domain

- Systems engineering across boundaries
- Influence vs. authority

Messy frontier

- Political engineering (power, control . . .)
- High risk, potentially high reward
- Foster cooperative behavior

Source: SEBOK Wiki

